If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7v2 + 3v + -2 = 0 Reorder the terms: -2 + 3v + 7v2 = 0 Solving -2 + 3v + 7v2 = 0 Solving for variable 'v'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.2857142857 + 0.4285714286v + v2 = 0 Move the constant term to the right: Add '0.2857142857' to each side of the equation. -0.2857142857 + 0.4285714286v + 0.2857142857 + v2 = 0 + 0.2857142857 Reorder the terms: -0.2857142857 + 0.2857142857 + 0.4285714286v + v2 = 0 + 0.2857142857 Combine like terms: -0.2857142857 + 0.2857142857 = 0.0000000000 0.0000000000 + 0.4285714286v + v2 = 0 + 0.2857142857 0.4285714286v + v2 = 0 + 0.2857142857 Combine like terms: 0 + 0.2857142857 = 0.2857142857 0.4285714286v + v2 = 0.2857142857 The v term is 0.4285714286v. Take half its coefficient (0.2142857143). Square it (0.04591836735) and add it to both sides. Add '0.04591836735' to each side of the equation. 0.4285714286v + 0.04591836735 + v2 = 0.2857142857 + 0.04591836735 Reorder the terms: 0.04591836735 + 0.4285714286v + v2 = 0.2857142857 + 0.04591836735 Combine like terms: 0.2857142857 + 0.04591836735 = 0.33163265305 0.04591836735 + 0.4285714286v + v2 = 0.33163265305 Factor a perfect square on the left side: (v + 0.2142857143)(v + 0.2142857143) = 0.33163265305 Calculate the square root of the right side: 0.575875553 Break this problem into two subproblems by setting (v + 0.2142857143) equal to 0.575875553 and -0.575875553.Subproblem 1
v + 0.2142857143 = 0.575875553 Simplifying v + 0.2142857143 = 0.575875553 Reorder the terms: 0.2142857143 + v = 0.575875553 Solving 0.2142857143 + v = 0.575875553 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + v = 0.575875553 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + v = 0.575875553 + -0.2142857143 v = 0.575875553 + -0.2142857143 Combine like terms: 0.575875553 + -0.2142857143 = 0.3615898387 v = 0.3615898387 Simplifying v = 0.3615898387Subproblem 2
v + 0.2142857143 = -0.575875553 Simplifying v + 0.2142857143 = -0.575875553 Reorder the terms: 0.2142857143 + v = -0.575875553 Solving 0.2142857143 + v = -0.575875553 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + v = -0.575875553 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + v = -0.575875553 + -0.2142857143 v = -0.575875553 + -0.2142857143 Combine like terms: -0.575875553 + -0.2142857143 = -0.7901612673 v = -0.7901612673 Simplifying v = -0.7901612673Solution
The solution to the problem is based on the solutions from the subproblems. v = {0.3615898387, -0.7901612673}
| w/7-8=12 | | -3/4x-6=-9 | | 9n^6-24n^3+16=0 | | 12r+36s= | | 3a+8=5a-20 | | 19.00+1.50n=15.00+2.75n | | 5x-2=40 | | 3t+2h-8h-4t+5= | | -7f^2+6f=0 | | 1halfx=4.8 | | 12=x/7-8 | | (5x-2)(4x)=40 | | -3(x-8)=-18 | | 8x+3=45 | | 2*4/1=4 | | 9z-6+7=16z-6 | | 2*2/1 | | -8(3p-6)=192 | | 4-3a/4 | | y+8=-2(x+0) | | 28=2(x+4) | | -10=-4x-4 | | 5a-20=180 | | 4x-2/3=70/3 | | -2x+2z+3y= | | ln(x)=5.4+ln(6.5) | | 3x+6x-4x= | | f(x)=x^2+18x+60 | | -4x-18=-34 | | =12a^2b^6 | | 10x-8=-28 | | 3a+8=180 |